Line data Source code
1 : /*
2 : * SPDX-License-Identifier: MPL-2.0
3 : *
4 : * This Source Code Form is subject to the terms of the Mozilla Public
5 : * License, v. 2.0. If a copy of the MPL was not distributed with this
6 : * file, You can obtain one at http://mozilla.org/MPL/2.0/.
7 : *
8 : * Copyright 2024 MonetDB Foundation;
9 : * Copyright August 2008 - 2023 MonetDB B.V.;
10 : * Copyright 1997 - July 2008 CWI.
11 : */
12 :
13 : /*
14 : * @f gdk_heap
15 : * @a Peter Boncz, Wilko Quak
16 : * @+ Atom Heaps
17 : * Heaps are the basic mass storage structure of Monet. A heap is a
18 : * handle to a large, possibly huge, contiguous area of main memory,
19 : * that can be allocated in various ways (discriminated by the
20 : * heap->storage field):
21 : *
22 : * @table @code
23 : * @item STORE_MEM: malloc-ed memory
24 : * small (or rather: not huge) heaps are allocated with GDKmalloc.
25 : * Notice that GDKmalloc may redirect big requests to anonymous
26 : * virtual memory to prevent @emph{memory fragmentation} in the malloc
27 : * library (see gdk_utils.c).
28 : *
29 : * @item STORE_MMAP: read-only mapped region
30 : * this is a file on disk that is mapped into virtual memory. This is
31 : * normally done MAP_SHARED, so we can use msync() to commit dirty
32 : * data using the OS virtual memory management.
33 : *
34 : * @item STORE_PRIV: read-write mapped region
35 : * in order to preserve ACID properties, we use a different memory
36 : * mapping on virtual memory that is writable. This is because in case
37 : * of a crash on a dirty STORE_MMAP heap, the OS may have written some
38 : * of the dirty pages to disk and other not (but it is impossible to
39 : * determine which). The OS MAP_PRIVATE mode does not modify the file
40 : * on which is being mapped, rather creates substitute pages
41 : * dynamically taken from the swap file when modifications occur. This
42 : * is the only way to make writing to mmap()-ed regions safe. To save
43 : * changes, we created a new file X.new; as some OS-es do not allow to
44 : * write into a file that has a mmap open on it (e.g. Windows). Such
45 : * X.new files take preference over X files when opening them.
46 : * @end table
47 : * Read also the discussion in BATsetaccess (gdk_bat.c).
48 : */
49 : #include "monetdb_config.h"
50 : #include "gdk.h"
51 : #include "gdk_private.h"
52 : #include "mutils.h"
53 :
54 : static void *
55 1455 : HEAPcreatefile(int farmid, size_t *maxsz, const char *fn)
56 : {
57 1455 : void *base = NULL;
58 1455 : char *path = NULL;
59 1455 : int fd;
60 :
61 1455 : if (farmid != NOFARM) {
62 : /* call GDKfilepath once here instead of twice inside
63 : * the calls to GDKfdlocate and GDKload */
64 992 : if ((path = GDKfilepath(farmid, BATDIR, fn, NULL)) == NULL)
65 : return NULL;
66 : fn = path;
67 : }
68 : /* round up to mulitple of GDK_mmap_pagesize */
69 1480 : fd = GDKfdlocate(NOFARM, fn, "wb", NULL);
70 1500 : if (fd >= 0) {
71 1500 : close(fd);
72 1495 : base = GDKload(NOFARM, fn, NULL, *maxsz, maxsz, STORE_MMAP);
73 : }
74 1506 : GDKfree(path);
75 1506 : return base;
76 : }
77 :
78 : static char *
79 45317 : decompose_filename(str nme)
80 : {
81 45317 : char *ext;
82 :
83 45317 : ext = strchr(nme, '.'); /* extract base and ext from heap file name */
84 45317 : if (ext) {
85 45317 : *ext++ = 0;
86 : }
87 45317 : return ext;
88 : }
89 :
90 : /* this function is called with the theaplock held */
91 : gdk_return
92 44669 : HEAPgrow(Heap **hp, size_t size, bool mayshare)
93 : {
94 44669 : Heap *new;
95 :
96 44669 : ATOMIC_BASE_TYPE refs = ATOMIC_GET(&(*hp)->refs);
97 44669 : if ((refs & HEAPREFS) == 1) {
98 44606 : return HEAPextend((*hp), size, mayshare);
99 : }
100 63 : new = GDKmalloc(sizeof(Heap));
101 63 : if (new != NULL) {
102 63 : Heap *old = *hp;
103 63 : *new = (Heap) {
104 63 : .farmid = old->farmid,
105 : .dirty = true,
106 63 : .parentid = old->parentid,
107 63 : .wasempty = old->wasempty,
108 63 : .hasfile = old->hasfile,
109 63 : .refs = ATOMIC_VAR_INIT(1 | (refs & HEAPREMOVE)),
110 : };
111 63 : memcpy(new->filename, old->filename, sizeof(new->filename));
112 63 : if (HEAPalloc(new, size, 1) == GDK_SUCCEED) {
113 63 : new->free = old->free;
114 63 : new->cleanhash = old->cleanhash;
115 63 : if (old->free > 0 &&
116 58 : (new->storage == STORE_MEM || old->storage == STORE_MEM))
117 36 : memcpy(new->base, old->base, old->free);
118 : /* else both are STORE_MMAP and refer to the
119 : * same file and so we don't need to copy */
120 :
121 : /* replace old heap with new */
122 63 : HEAPdecref(*hp, false);
123 63 : *hp = new;
124 : } else {
125 0 : GDKfree(new);
126 0 : new = NULL;
127 : }
128 : }
129 63 : return new ? GDK_SUCCEED : GDK_FAIL;
130 : }
131 :
132 : /*
133 : * @- HEAPalloc
134 : *
135 : * Normally, we use GDKmalloc for creating a new heap. Huge heaps,
136 : * though, come from memory mapped files that we create with a large
137 : * fallocate. This is fast, and leads to files-with-holes on Unixes (on
138 : * Windows, it actually always performs I/O which is not nice).
139 : */
140 : gdk_return
141 7862963 : HEAPalloc(Heap *h, size_t nitems, size_t itemsize)
142 : {
143 7862963 : size_t size = 0;
144 7862963 : QryCtx *qc = h->farmid == 1 ? MT_thread_get_qry_ctx() : NULL;
145 :
146 7885465 : h->base = NULL;
147 7885465 : h->size = 1;
148 7885465 : if (itemsize) {
149 : /* check for overflow */
150 7885465 : if (nitems > BUN_NONE / itemsize) {
151 0 : GDKerror("allocating more than heap can accomodate\n");
152 0 : return GDK_FAIL;
153 : }
154 7885465 : h->size = MAX(1, nitems) * itemsize;
155 : }
156 7885465 : h->free = 0;
157 7885465 : h->cleanhash = false;
158 :
159 : #ifdef SIZE_CHECK_IN_HEAPS_ONLY
160 7885465 : if (GDKvm_cursize() + h->size >= GDK_vm_maxsize &&
161 0 : !MT_thread_override_limits()) {
162 0 : GDKerror("allocating too much memory (current: %zu, requested: %zu, limit: %zu)\n", GDKvm_cursize(), h->size, GDK_vm_maxsize);
163 0 : return GDK_FAIL;
164 : }
165 : #endif
166 :
167 7863891 : size_t allocated;
168 7863891 : if (GDKinmemory(h->farmid) ||
169 15769837 : ((allocated = GDKmem_cursize()) + h->size < GDK_mem_maxsize &&
170 7893014 : h->size < (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient) &&
171 7894373 : h->size < ((GDK_mem_maxsize - allocated) >> 6))) {
172 7913702 : h->storage = STORE_MEM;
173 7913702 : size = h->size;
174 7913702 : if (qc != NULL) {
175 4862937 : ATOMIC_BASE_TYPE sz = ATOMIC_ADD(&qc->datasize, size);
176 4862937 : sz += size;
177 4862937 : if (qc->maxmem > 0 && sz > qc->maxmem) {
178 0 : ATOMIC_SUB(&qc->datasize, size);
179 0 : GDKerror("Query using too much memory.\n");
180 0 : return GDK_FAIL;
181 : }
182 : }
183 7913702 : h->base = GDKmalloc(size);
184 7935024 : TRC_DEBUG(HEAP, "%s %zu %p\n", h->filename, size, h->base);
185 7935024 : if (h->base == NULL && qc != NULL)
186 0 : ATOMIC_SUB(&qc->datasize, size);
187 : }
188 :
189 7910660 : if (h->base == NULL && !GDKinmemory(h->farmid)) {
190 462 : char *nme = GDKfilepath(h->farmid, BATDIR, h->filename, NULL);
191 466 : if (nme == NULL)
192 : return GDK_FAIL;
193 466 : h->storage = STORE_MMAP;
194 466 : h->size = (h->size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1);
195 466 : size = h->size;
196 466 : if (qc != NULL) {
197 1 : ATOMIC_BASE_TYPE sz = ATOMIC_ADD(&qc->datasize, size);
198 1 : sz += size;
199 1 : if (qc->maxmem > 0 && sz > qc->maxmem) {
200 0 : ATOMIC_SUB(&qc->datasize, size);
201 0 : GDKerror("Query using too much memory.\n");
202 0 : return GDK_FAIL;
203 : }
204 : }
205 466 : h->base = HEAPcreatefile(NOFARM, &h->size, nme);
206 469 : h->hasfile = true;
207 469 : if (h->base == NULL) {
208 0 : if (qc != NULL)
209 0 : ATOMIC_SUB(&qc->datasize, size);
210 : /* remove file we may just have created
211 : * it may or may not exist, depending on what
212 : * failed */
213 0 : (void) MT_remove(nme);
214 0 : GDKfree(nme);
215 0 : h->hasfile = false; /* just removed it */
216 0 : GDKerror("Insufficient space for HEAP of %zu bytes.", h->size);
217 0 : return GDK_FAIL;
218 : }
219 469 : GDKfree(nme);
220 469 : TRC_DEBUG(HEAP, "%s %zu %p (mmap)\n", h->filename, size, h->base);
221 : }
222 7910668 : h->newstorage = h->storage;
223 7910668 : return GDK_SUCCEED;
224 : }
225 :
226 : /* Extend the allocated space of the heap H to be at least SIZE bytes.
227 : * If the heap grows beyond a threshold and a filename is known, the
228 : * heap is converted from allocated memory to a memory-mapped file.
229 : * When switching from allocated to memory mapped, if MAYSHARE is set,
230 : * the heap does not have to be copy-on-write.
231 : *
232 : * The function returns 0 on success, -1 on failure.
233 : *
234 : * When extending a memory-mapped heap, we use the function MT_mremap
235 : * (which see). When extending an allocated heap, we use GDKrealloc.
236 : * If that fails, we switch to memory mapped, even when the size is
237 : * below the threshold.
238 : *
239 : * When converting from allocated to memory mapped, we try several
240 : * strategies. First we try to create the memory map, and if that
241 : * works, copy the data and free the old memory. If this fails, we
242 : * first write the data to disk, free the memory, and then try to
243 : * memory map the saved data. */
244 : gdk_return
245 59398 : HEAPextend(Heap *h, size_t size, bool mayshare)
246 : {
247 59398 : size_t osize = h->size;
248 59398 : size_t xsize;
249 59398 : QryCtx *qc = h->farmid == 1 ? MT_thread_get_qry_ctx() : NULL;
250 :
251 59416 : if (size <= h->size)
252 : return GDK_SUCCEED; /* nothing to do */
253 :
254 45405 : char nme[sizeof(h->filename)], *ext;
255 45405 : const char *failure = "None";
256 :
257 45405 : if (GDKinmemory(h->farmid)) {
258 43 : strcpy_len(nme, ":memory:", sizeof(nme));
259 43 : ext = "ext";
260 : } else {
261 45293 : strcpy_len(nme, h->filename, sizeof(nme));
262 45437 : ext = decompose_filename(nme);
263 : }
264 45314 : failure = "size > h->size";
265 :
266 : #ifdef SIZE_CHECK_IN_HEAPS_ONLY
267 45314 : if (GDKvm_cursize() + size - h->size >= GDK_vm_maxsize &&
268 0 : !MT_thread_override_limits()) {
269 0 : GDKerror("allocating too much memory (current: %zu, requested: %zu, limit: %zu)\n", GDKvm_cursize(), size - h->size, GDK_vm_maxsize);
270 0 : return GDK_FAIL;
271 : }
272 : #endif
273 :
274 45338 : if (h->storage != STORE_MEM) {
275 465 : char *p;
276 465 : char *path;
277 :
278 465 : assert(h->hasfile);
279 465 : TRC_DEBUG(HEAP, "Extending %s mmapped heap (%s)\n", h->storage == STORE_MMAP ? "shared" : "privately", h->filename);
280 : /* extend memory mapped file */
281 465 : if ((path = GDKfilepath(h->farmid, BATDIR, nme, ext)) == NULL) {
282 : return GDK_FAIL;
283 : }
284 465 : size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1);
285 465 : if (size == 0)
286 0 : size = GDK_mmap_pagesize;
287 :
288 465 : xsize = size - osize;
289 :
290 465 : if (qc != NULL) {
291 43 : ATOMIC_BASE_TYPE sz = ATOMIC_ADD(&qc->datasize, xsize);
292 43 : sz += size - osize;
293 43 : if (qc->maxmem > 0 && sz > qc->maxmem) {
294 0 : GDKerror("Query using too much memory.\n");
295 0 : ATOMIC_SUB(&qc->datasize, xsize);
296 0 : return GDK_FAIL;
297 : }
298 : }
299 930 : p = GDKmremap(path,
300 : h->storage == STORE_PRIV ?
301 : MMAP_COPY | MMAP_READ | MMAP_WRITE :
302 : MMAP_READ | MMAP_WRITE,
303 : h->base, h->size, &size);
304 465 : GDKfree(path);
305 465 : if (p) {
306 465 : h->size = size;
307 465 : h->base = p;
308 465 : return GDK_SUCCEED; /* success */
309 : }
310 0 : if (qc != NULL)
311 0 : ATOMIC_SUB(&qc->datasize, xsize);
312 : failure = "GDKmremap() failed";
313 : } else {
314 : /* extend a malloced heap, possibly switching over to
315 : * file-mapped storage */
316 44873 : Heap bak = *h;
317 44873 : size_t allocated;
318 44873 : bool must_mmap = (!GDKinmemory(h->farmid) &&
319 44905 : (h->newstorage != STORE_MEM ||
320 89650 : (allocated = GDKmem_cursize()) + size >= GDK_mem_maxsize ||
321 44826 : size >= (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient) ||
322 43844 : size >= ((GDK_mem_maxsize - allocated) >> 6)));
323 :
324 44875 : h->size = size;
325 44875 : xsize = size - osize;
326 :
327 : /* try GDKrealloc if the heap size stays within
328 : * reasonable limits */
329 44875 : if (!must_mmap) {
330 43814 : if (qc != NULL) {
331 22294 : ATOMIC_BASE_TYPE sz = ATOMIC_ADD(&qc->datasize, xsize);
332 22294 : sz += xsize;
333 22294 : if (qc->maxmem > 0 && sz > qc->maxmem) {
334 0 : GDKerror("Query using too much memory.\n");
335 0 : ATOMIC_SUB(&qc->datasize, xsize);
336 0 : *h = bak;
337 45141 : return GDK_FAIL;
338 : }
339 : }
340 43814 : h->newstorage = h->storage = STORE_MEM;
341 43814 : h->base = GDKrealloc(h->base, size);
342 44074 : TRC_DEBUG(HEAP, "Extending malloced heap %s %zu->%zu %p->%p\n", h->filename, bak.size, size, bak.base, h->base);
343 44074 : if (h->base) {
344 : return GDK_SUCCEED; /* success */
345 : }
346 : /* bak.base is still valid and may get restored */
347 0 : failure = "h->storage == STORE_MEM && !must_map && !h->base";
348 0 : if (qc != NULL)
349 0 : ATOMIC_SUB(&qc->datasize, xsize);
350 : }
351 :
352 1061 : if (!GDKinmemory(h->farmid)) {
353 : /* too big: convert it to a disk-based temporary heap */
354 :
355 1020 : assert(h->storage == STORE_MEM);
356 1020 : assert(ext != NULL);
357 : /* if the heap file already exists, we want to switch
358 : * to STORE_PRIV (copy-on-write memory mapped files),
359 : * but if the heap file doesn't exist yet, the BAT is
360 : * new and we can use STORE_MMAP */
361 1020 : int fd = GDKfdlocate(h->farmid, nme, "rb", ext);
362 1025 : if (fd >= 0) {
363 30 : assert(h->hasfile);
364 30 : close(fd);
365 30 : fd = GDKfdlocate(h->farmid, nme, "wb", ext);
366 30 : if (fd >= 0) {
367 30 : gdk_return rc = GDKextendf(fd, size, nme);
368 30 : close(fd);
369 30 : if (rc != GDK_SUCCEED) {
370 0 : failure = "h->storage == STORE_MEM && can_map && fd >= 0 && GDKextendf() != GDK_SUCCEED";
371 0 : goto failed;
372 : }
373 30 : h->storage = h->newstorage == STORE_MMAP && !mayshare ? STORE_PRIV : h->newstorage;
374 : /* make sure we really MMAP */
375 30 : if (must_mmap && h->newstorage == STORE_MEM)
376 30 : h->storage = STORE_MMAP;
377 30 : h->newstorage = h->storage;
378 :
379 30 : h->base = NULL;
380 30 : TRC_DEBUG(HEAP, "Converting malloced to %s mmapped heap %s\n", h->newstorage == STORE_MMAP ? "shared" : "privately", h->filename);
381 : /* try to allocate a memory-mapped based
382 : * heap */
383 30 : if (HEAPload(h, nme, ext, false) == GDK_SUCCEED) {
384 : /* copy data to heap and free old
385 : * memory */
386 30 : memcpy(h->base, bak.base, bak.free);
387 30 : HEAPfree(&bak, false);
388 30 : return GDK_SUCCEED;
389 : }
390 : failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPload() != GDK_SUCCEED";
391 : /* we failed */
392 : } else {
393 : failure = "h->storage == STORE_MEM && can_map && fd < 0";
394 : }
395 : } else {
396 : /* no pre-existing heap file, so create a new
397 : * one */
398 995 : if (qc != NULL) {
399 3 : h->size = (h->size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1);
400 3 : xsize = h->size;
401 3 : ATOMIC_BASE_TYPE sz = ATOMIC_ADD(&qc->datasize, xsize);
402 3 : sz += h->size;
403 3 : if (qc->maxmem > 0 && sz > qc->maxmem) {
404 0 : GDKerror("Query using too much memory.\n");
405 0 : sz = ATOMIC_ADD(&qc->datasize, xsize);
406 0 : *h = bak;
407 0 : return GDK_FAIL;
408 : }
409 : }
410 995 : h->base = HEAPcreatefile(h->farmid, &h->size, h->filename);
411 1037 : h->hasfile = true;
412 1037 : if (h->base) {
413 1037 : h->newstorage = h->storage = STORE_MMAP;
414 1037 : if (bak.free > 0)
415 35 : memcpy(h->base, bak.base, bak.free);
416 1037 : HEAPfree(&bak, false);
417 1037 : return GDK_SUCCEED;
418 : }
419 0 : failure = "h->storage == STORE_MEM && can_map && fd >= 0 && HEAPcreatefile() == NULL";
420 0 : if (qc != NULL)
421 0 : ATOMIC_SUB(&qc->datasize, xsize);
422 : }
423 : }
424 0 : failed:
425 0 : if (h->hasfile && !bak.hasfile) {
426 0 : char *path = GDKfilepath(h->farmid, BATDIR, nme, ext);
427 0 : if (path) {
428 0 : MT_remove(path);
429 0 : GDKfree(path);
430 : } else {
431 : /* couldn't remove, so now we have a file */
432 0 : bak.hasfile = true;
433 : }
434 : }
435 0 : *h = bak;
436 : }
437 0 : GDKerror("failed to extend to %zu for %s%s%s: %s\n",
438 : size, nme, ext ? "." : "", ext ? ext : "", failure);
439 0 : return GDK_FAIL;
440 : }
441 :
442 : /* grow the string offset heap so that the value v fits (i.e. wide
443 : * enough to fit the value), and it has space for at least cap elements;
444 : * copy ncopy BUNs, or up to the heap size, whichever is smaller */
445 : gdk_return
446 119698 : GDKupgradevarheap(BAT *b, var_t v, BUN cap, BUN ncopy)
447 : {
448 119698 : uint8_t shift = b->tshift;
449 119698 : uint16_t width = b->twidth;
450 119698 : uint8_t *pc;
451 119698 : uint16_t *ps;
452 119698 : uint32_t *pi;
453 : #if SIZEOF_VAR_T == 8
454 119698 : uint64_t *pl;
455 : #endif
456 119698 : size_t i, n;
457 119698 : size_t newsize;
458 119698 : bat bid = b->batCacheid;
459 119698 : Heap *old, *new;
460 :
461 119698 : old = b->theap;
462 : // assert(old->storage == STORE_MEM);
463 119698 : assert(old->parentid == b->batCacheid);
464 119698 : assert(b->tbaseoff == 0);
465 119698 : assert(width != 0);
466 119698 : assert(v >= GDK_VAROFFSET);
467 :
468 150087 : while (width < SIZEOF_VAR_T && (width <= 2 ? v - GDK_VAROFFSET : v) >= ((var_t) 1 << (8 * width))) {
469 30389 : width <<= 1;
470 30389 : shift++;
471 : }
472 : /* if cap(acity) given (we check whether it is larger than the
473 : * old), then grow to cap */
474 119698 : if (cap > (old->size >> b->tshift))
475 5118 : newsize = cap << shift;
476 : else
477 114580 : newsize = (old->size >> b->tshift) << shift;
478 119698 : if (b->twidth == width) {
479 90781 : if (newsize <= old->size) {
480 : /* nothing to do */
481 87159 : if (cap > b->batCapacity)
482 0 : BATsetcapacity(b, cap);
483 87159 : return GDK_SUCCEED;
484 : }
485 3622 : return BATextend(b, newsize >> shift);
486 : }
487 :
488 28917 : n = MIN(ncopy, old->size >> b->tshift);
489 :
490 45476 : MT_thread_setalgorithm(n ? "widen offset heap" : "widen empty offset heap");
491 :
492 29141 : new = GDKmalloc(sizeof(Heap));
493 29149 : if (new == NULL)
494 : return GDK_FAIL;
495 29149 : *new = (Heap) {
496 29149 : .farmid = old->farmid,
497 : .dirty = true,
498 29149 : .parentid = old->parentid,
499 29149 : .wasempty = old->wasempty,
500 29149 : .refs = ATOMIC_VAR_INIT(1 | (ATOMIC_GET(&old->refs) & HEAPREMOVE)),
501 : };
502 29149 : settailname(new, BBP_physical(b->batCacheid), b->ttype, width);
503 29139 : if (HEAPalloc(new, newsize, 1) != GDK_SUCCEED) {
504 0 : GDKfree(new);
505 0 : return GDK_FAIL;
506 : }
507 : /* HEAPalloc initialized .free, so we need to set it after */
508 29150 : new->free = old->free << (shift - b->tshift);
509 : /* per the above, width > b->twidth, so certain combinations are
510 : * impossible */
511 29150 : switch (width) {
512 26667 : case 2:
513 26667 : ps = (uint16_t *) new->base;
514 26667 : switch (b->twidth) {
515 26667 : case 1:
516 26667 : pc = (uint8_t *) old->base;
517 1155910 : for (i = 0; i < n; i++)
518 1129243 : ps[i] = pc[i];
519 26667 : break;
520 : default:
521 0 : MT_UNREACHABLE();
522 : }
523 : #ifndef NDEBUG
524 : /* valgrind */
525 26667 : memset(ps + n, 0, new->size - n * 2);
526 : #endif
527 26667 : break;
528 2483 : case 4:
529 2483 : pi = (uint32_t *) new->base;
530 2483 : switch (b->twidth) {
531 1397 : case 1:
532 1397 : pc = (uint8_t *) old->base;
533 1401 : for (i = 0; i < n; i++)
534 4 : pi[i] = pc[i] + GDK_VAROFFSET;
535 : break;
536 1086 : case 2:
537 1086 : ps = (uint16_t *) old->base;
538 1578568 : for (i = 0; i < n; i++)
539 1577482 : pi[i] = ps[i] + GDK_VAROFFSET;
540 : break;
541 : default:
542 0 : MT_UNREACHABLE();
543 : }
544 : #ifndef NDEBUG
545 : /* valgrind */
546 2483 : memset(pi + n, 0, new->size - n * 4);
547 : #endif
548 2483 : break;
549 : #if SIZEOF_VAR_T == 8
550 0 : case 8:
551 0 : pl = (uint64_t *) new->base;
552 0 : switch (b->twidth) {
553 0 : case 1:
554 0 : pc = (uint8_t *) old->base;
555 0 : for (i = 0; i < n; i++)
556 0 : pl[i] = pc[i] + GDK_VAROFFSET;
557 : break;
558 0 : case 2:
559 0 : ps = (uint16_t *) old->base;
560 0 : for (i = 0; i < n; i++)
561 0 : pl[i] = ps[i] + GDK_VAROFFSET;
562 : break;
563 0 : case 4:
564 0 : pi = (uint32_t *) old->base;
565 0 : for (i = 0; i < n; i++)
566 0 : pl[i] = pi[i];
567 : break;
568 : default:
569 0 : MT_UNREACHABLE();
570 : }
571 : #ifndef NDEBUG
572 : /* valgrind */
573 0 : memset(pl + n, 0, new->size - n * 8);
574 : #endif
575 0 : break;
576 : #endif
577 : default:
578 0 : MT_UNREACHABLE();
579 : }
580 29150 : MT_lock_set(&b->theaplock);
581 29040 : b->tshift = shift;
582 29040 : b->twidth = width;
583 29040 : if (cap > BATcapacity(b))
584 1491 : BATsetcapacity(b, cap);
585 29040 : b->theap = new;
586 29040 : if (BBP_status(bid) & (BBPEXISTING|BBPDELETED) && b->oldtail == NULL) {
587 1980 : b->oldtail = old;
588 1980 : if ((ATOMIC_OR(&old->refs, DELAYEDREMOVE) & HEAPREFS) == 1) {
589 : /* we have the only reference, we can free the
590 : * memory */
591 1980 : HEAPfree(old, false);
592 : }
593 : } else {
594 27060 : ValPtr p = BATgetprop_nolock(b, (enum prop_t) 20);
595 54086 : HEAPdecref(old, p == NULL || strcmp(((Heap*) p->val.pval)->filename, old->filename) != 0);
596 : }
597 29158 : MT_lock_unset(&b->theaplock);
598 29099 : return GDK_SUCCEED;
599 : }
600 :
601 : /*
602 : * @- HEAPcopy
603 : * simple: alloc and copy. Notice that we suppose a preallocated
604 : * dst->filename (or NULL), which might be used in HEAPalloc().
605 : */
606 : gdk_return
607 2981 : HEAPcopy(Heap *dst, Heap *src, size_t offset)
608 : {
609 2981 : if (offset > src->free)
610 : offset = src->free;
611 2981 : if (HEAPalloc(dst, src->free - offset, 1) == GDK_SUCCEED) {
612 2998 : dst->free = src->free - offset;
613 2998 : memcpy(dst->base, src->base + offset, src->free - offset);
614 2998 : dst->cleanhash = src->cleanhash;
615 2998 : dst->dirty = true;
616 2998 : return GDK_SUCCEED;
617 : }
618 : return GDK_FAIL;
619 : }
620 :
621 : /* Free the memory associated with the heap H.
622 : * Unlinks (removes) the associated file if the rmheap flag is set. */
623 : void
624 14512524 : HEAPfree(Heap *h, bool rmheap)
625 : {
626 14512524 : if (h->base) {
627 7992795 : if (h->farmid == 1 && (h->storage == STORE_MEM || h->storage == STORE_MMAP || h->storage == STORE_PRIV)) {
628 7437928 : QryCtx *qc = MT_thread_get_qry_ctx();
629 7443095 : if (qc)
630 4915535 : ATOMIC_SUB(&qc->datasize, h->size);
631 : }
632 7997962 : if (h->storage == STORE_MEM) { /* plain memory */
633 7995805 : TRC_DEBUG(HEAP, "HEAPfree %s %zu %p\n", h->filename, h->size, h->base);
634 7995805 : GDKfree(h->base);
635 2157 : } else if (h->storage == STORE_CMEM) {
636 : //heap is stored in regular C memory rather than GDK memory,so we call free()
637 47 : free(h->base);
638 2110 : } else if (h->storage != STORE_NOWN) { /* mapped file, or STORE_PRIV */
639 4220 : gdk_return ret = GDKmunmap(h->base,
640 : h->storage == STORE_PRIV ?
641 : MMAP_COPY | MMAP_READ | MMAP_WRITE :
642 : MMAP_READ | MMAP_WRITE,
643 : h->size);
644 :
645 2114 : if (ret != GDK_SUCCEED) {
646 0 : GDKsyserror("HEAPfree: %s was not mapped\n",
647 : h->filename);
648 0 : assert(0);
649 : }
650 2114 : TRC_DEBUG(HEAP, "munmap(base=%p, size=%zu) = %d\n",
651 : (void *)h->base, h->size, (int) ret);
652 : }
653 : }
654 14519163 : h->base = NULL;
655 14519163 : if (rmheap && !GDKinmemory(h->farmid)) {
656 13902580 : if (h->hasfile) {
657 35129 : char *path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL);
658 35128 : if (path) {
659 35128 : int ret = MT_remove(path);
660 35128 : if (ret == -1) {
661 : /* unexpectedly not present */
662 0 : perror(path);
663 : }
664 35128 : assert(ret == 0);
665 35128 : GDKfree(path);
666 35130 : h->hasfile = false;
667 : }
668 35130 : path = GDKfilepath(h->farmid, BATDIR, h->filename, "new");
669 35130 : if (path) {
670 : /* in practice, should never be present */
671 35130 : int ret = MT_remove(path);
672 35130 : if (ret == -1 && errno != ENOENT)
673 0 : perror(path);
674 35130 : assert(ret == -1 && errno == ENOENT);
675 35130 : GDKfree(path);
676 : }
677 : #ifndef NDEBUG
678 : } else {
679 13867451 : char *path = GDKfilepath(h->farmid, BATDIR, h->filename, NULL);
680 13837904 : if (path) {
681 : /* should not be present */
682 13837904 : struct stat st;
683 13837904 : assert(stat(path, &st) == -1 && errno == ENOENT);
684 13775574 : GDKfree(path);
685 : }
686 : #endif
687 : }
688 : }
689 14498291 : }
690 :
691 : void
692 72034417 : HEAPdecref(Heap *h, bool remove)
693 : {
694 72034417 : if (remove)
695 11083084 : ATOMIC_OR(&h->refs, HEAPREMOVE);
696 72034417 : ATOMIC_BASE_TYPE refs = ATOMIC_DEC(&h->refs);
697 : //printf("dec ref(%d) %p %d\n", (int)h->refs, h, h->parentid);
698 72034417 : switch (refs & HEAPREFS) {
699 11142621 : case 0:
700 11142621 : HEAPfree(h, (bool) (refs & HEAPREMOVE));
701 11115122 : GDKfree(h);
702 11115122 : break;
703 26999810 : case 1:
704 26999810 : if (refs & DELAYEDREMOVE) {
705 : /* only reference left is b->oldtail */
706 1658 : HEAPfree(h, false);
707 : }
708 : break;
709 : default:
710 : break;
711 : }
712 72032508 : }
713 :
714 : void
715 60683410 : HEAPincref(Heap *h)
716 : {
717 : //printf("inc ref(%d) %p %d\n", (int)h->refs, h, h->parentid);
718 60683410 : ATOMIC_INC(&h->refs);
719 60683410 : }
720 :
721 : /*
722 : * @- HEAPload
723 : *
724 : * If we find file X.new, we move it over X (if present) and open it.
725 : */
726 : gdk_return
727 23197 : HEAPload(Heap *h, const char *nme, const char *ext, bool trunc)
728 : {
729 23197 : size_t minsize;
730 23197 : int ret = 0;
731 23197 : char *srcpath, *dstpath;
732 23197 : lng t0;
733 23197 : const char suffix[] = ".new";
734 :
735 23197 : if (h->storage == STORE_INVALID || h->newstorage == STORE_INVALID) {
736 23167 : size_t allocated;
737 46334 : h->storage = h->newstorage = h->size < (h->farmid == 0 ? GDK_mmap_minsize_persistent : GDK_mmap_minsize_transient) &&
738 22589 : (allocated = GDKmem_cursize()) < GDK_mem_maxsize &&
739 45756 : h->size < ((GDK_mem_maxsize - allocated) >> 6) ? STORE_MEM : STORE_MMAP;
740 : }
741 :
742 23197 : minsize = (h->size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1);
743 23197 : if (h->storage != STORE_MEM && minsize != h->size)
744 104 : h->size = minsize;
745 :
746 : /* when a bat is made read-only, we can truncate any unused
747 : * space at the end of the heap */
748 23197 : if (trunc) {
749 : /* round up mmap heap sizes to GDK_mmap_pagesize
750 : * segments, also add some slack */
751 21968 : int fd;
752 :
753 21968 : if (minsize == 0)
754 0 : minsize = GDK_mmap_pagesize; /* minimum of one page */
755 21968 : if ((fd = GDKfdlocate(h->farmid, nme, "rb+", ext)) >= 0) {
756 21968 : struct stat stb;
757 21968 : if (fstat(fd, &stb) == 0 &&
758 21968 : stb.st_size > (off_t) minsize) {
759 0 : ret = ftruncate(fd, minsize);
760 0 : TRC_DEBUG(HEAP,
761 : "ftruncate(file=%s.%s, size=%zu) = %d\n",
762 : nme, ext, minsize, ret);
763 0 : if (ret == 0) {
764 0 : h->size = minsize;
765 : }
766 : }
767 21967 : close(fd);
768 : }
769 : }
770 :
771 23198 : TRC_DEBUG(HEAP, "%s%s%s,storage=%d,free=%zu,size=%zu\n",
772 : nme, ext ? "." : "", ext ? ext : "",
773 : (int) h->storage, h->free, h->size);
774 :
775 : /* On some OSs (WIN32,Solaris), it is prohibited to write to a
776 : * file that is open in MAP_PRIVATE (FILE_MAP_COPY) solution:
777 : * we write to a file named .ext.new. This file, if present,
778 : * takes precedence. */
779 23198 : dstpath = GDKfilepath(h->farmid, BATDIR, nme, ext);
780 23197 : if (dstpath == NULL)
781 : return GDK_FAIL;
782 23197 : minsize = strlen(dstpath) + strlen(suffix) + 1;
783 23197 : srcpath = GDKmalloc(minsize);
784 23197 : if (srcpath == NULL) {
785 0 : GDKfree(dstpath);
786 0 : return GDK_FAIL;
787 : }
788 23197 : strconcat_len(srcpath, minsize, dstpath, suffix, NULL);
789 :
790 23197 : t0 = GDKusec();
791 23198 : ret = MT_rename(srcpath, dstpath);
792 23198 : TRC_DEBUG(HEAP, "rename %s %s = %d %s ("LLFMT"usec)\n",
793 : srcpath, dstpath, ret, ret < 0 ? GDKstrerror(errno, (char[128]){0}, 128) : "",
794 : GDKusec() - t0);
795 23198 : GDKfree(srcpath);
796 23198 : GDKfree(dstpath);
797 :
798 : #ifdef SIZE_CHECK_IN_HEAPS_ONLY
799 23198 : if (GDKvm_cursize() + h->size >= GDK_vm_maxsize &&
800 0 : !MT_thread_override_limits()) {
801 0 : GDKerror("allocating too much memory (current: %zu, requested: %zu, limit: %zu)\n", GDKvm_cursize(), h->size, GDK_vm_maxsize);
802 0 : return GDK_FAIL;
803 : }
804 : #endif
805 :
806 23197 : size_t size = h->size;
807 23197 : QryCtx *qc = NULL;
808 23197 : if (h->storage != STORE_MEM)
809 608 : size = (size + GDK_mmap_pagesize - 1) & ~(GDK_mmap_pagesize - 1);
810 23197 : if (h->farmid == 1 && (qc = MT_thread_get_qry_ctx()) != NULL) {
811 0 : ATOMIC_BASE_TYPE sz = 0;
812 0 : sz = ATOMIC_ADD(&qc->datasize, size);
813 0 : sz += h->size;
814 0 : if (qc->maxmem > 0 && sz > qc->maxmem) {
815 0 : ATOMIC_SUB(&qc->datasize, size);
816 0 : GDKerror("Query using too much memory.\n");
817 0 : return GDK_FAIL;
818 : }
819 : }
820 23197 : if (h->storage == STORE_MEM && h->free == 0) {
821 0 : h->base = GDKmalloc(h->size);
822 0 : h->wasempty = true;
823 : } else {
824 23197 : if (h->free == 0) {
825 0 : int fd = GDKfdlocate(h->farmid, nme, "wb", ext);
826 0 : if (fd >= 0)
827 0 : close(fd);
828 0 : h->wasempty = true;
829 : }
830 23197 : h->base = GDKload(h->farmid, nme, ext, h->free, &h->size, h->storage);
831 : }
832 23197 : if (h->base == NULL) {
833 0 : if (qc != NULL)
834 0 : ATOMIC_SUB(&qc->datasize, size);
835 0 : return GDK_FAIL; /* file could not be read satisfactorily */
836 : }
837 :
838 23197 : h->dirty = false; /* we just read it, so it's clean */
839 23197 : return GDK_SUCCEED;
840 : }
841 :
842 : /*
843 : * @- HEAPsave
844 : *
845 : * Saving STORE_MEM will do a write(fd, buf, size) in GDKsave
846 : * (explicit IO).
847 : *
848 : * Saving a STORE_PRIV heap X means that we must actually write to
849 : * X.new, thus we convert the mode passed to GDKsave to STORE_MEM.
850 : *
851 : * Saving STORE_MMAP will do a msync(buf, MSSYNC) in GDKsave (implicit
852 : * IO).
853 : *
854 : * After GDKsave returns successfully (>=0), we assume the heaps are
855 : * safe on stable storage.
856 : */
857 : gdk_return
858 302401 : HEAPsave(Heap *h, const char *nme, const char *ext, bool dosync, BUN free, MT_Lock *lock)
859 : {
860 302401 : storage_t store = h->newstorage;
861 302401 : long_str extension;
862 302401 : gdk_return rc;
863 302401 : const char suffix[] = ".new";
864 :
865 302401 : if (h->base == NULL) {
866 0 : GDKerror("no heap to save\n");
867 0 : return GDK_FAIL;
868 : }
869 302401 : if (free == 0) {
870 : /* nothing to see, please move on */
871 399 : if (lock)
872 399 : MT_lock_set(lock);
873 399 : h->wasempty = true;
874 0 : if (lock)
875 399 : MT_lock_unset(lock);
876 399 : TRC_DEBUG(HEAP,
877 : "not saving: "
878 : "(%s.%s,storage=%d,free=%zu,size=%zu,dosync=%s)\n",
879 : nme?nme:"", ext, (int) h->newstorage, free, h->size,
880 : dosync?"true":"false");
881 399 : return GDK_SUCCEED;
882 : }
883 302002 : if (h->storage != STORE_MEM && store == STORE_PRIV) {
884 : /* anonymous or private VM is saved as if it were malloced */
885 0 : store = STORE_MEM;
886 0 : assert(strlen(ext) + strlen(suffix) < sizeof(extension));
887 0 : strconcat_len(extension, sizeof(extension), ext, suffix, NULL);
888 0 : ext = extension;
889 302002 : } else if (store != STORE_MEM) {
890 1017 : store = h->storage;
891 : }
892 302002 : TRC_DEBUG(HEAP,
893 : "(%s.%s,storage=%d,free=%zu,size=%zu,dosync=%s)\n",
894 : nme?nme:"", ext, (int) h->newstorage, free, h->size,
895 : dosync?"true":"false");
896 302002 : rc = GDKsave(h->farmid, nme, ext, h->base, free, store, dosync);
897 302002 : if (lock)
898 277302 : MT_lock_set(lock);
899 302002 : if (rc == GDK_SUCCEED) {
900 302002 : h->hasfile = true;
901 302002 : h->dirty = free != h->free;
902 302002 : h->wasempty = false;
903 : } else {
904 0 : h->dirty = true;
905 0 : if (store != STORE_MMAP)
906 0 : h->hasfile = false;
907 : }
908 302002 : if (lock)
909 277302 : MT_lock_unset(lock);
910 : return rc;
911 : }
912 :
913 :
914 : /* Return the (virtual) size of the heap. */
915 : size_t
916 304423 : HEAPvmsize(Heap *h)
917 : {
918 304423 : if (h && h->base && h->free)
919 26061 : return h->size;
920 : return 0;
921 : }
922 :
923 : /* Return the allocated size of the heap, i.e. if the heap is memory
924 : * mapped and not copy-on-write (privately mapped), return 0. */
925 : size_t
926 304423 : HEAPmemsize(Heap *h)
927 : {
928 304423 : if (h && h->base && h->free && h->storage != STORE_MMAP)
929 25567 : return h->size;
930 : return 0;
931 : }
932 :
933 :
934 : /*
935 : * @+ Standard Heap Library
936 : * This library contains some routines which implement a @emph{
937 : * malloc} and @emph{ free} function on the Monet @emph{Heap}
938 : * structure. They are useful when implementing a new @emph{
939 : * variable-size} atomic data type, or for implementing new search
940 : * accelerators. All functions start with the prefix @emph{HEAP_}. T
941 : *
942 : * Due to non-careful design, the HEADER field was found to be
943 : * 32/64-bit dependent. As we do not (yet) want to change the BAT
944 : * image on disk, This is now fixed by switching on-the-fly between
945 : * two representations. We ensure that the 64-bit memory
946 : * representation is just as long as the 32-bits version (20 bytes) so
947 : * the rest of the heap never needs to shift. The function
948 : * HEAP_checkformat converts at load time dynamically between the
949 : * layout found on disk and the memory format. Recognition of the
950 : * header mode is done by looking at the first two ints: alignment
951 : * must be 4 or 8, and head can never be 4 or eight.
952 : *
953 : * TODO: user HEADER64 for both 32 and 64 bits (requires BAT format
954 : * change)
955 : */
956 :
957 : #define HEAPVERSION 20030408
958 :
959 : typedef struct heapheader {
960 : size_t head; /* index to first free block */
961 : int alignment; /* alignment of objects on heap */
962 : size_t firstblock; /* first block in heap */
963 : int version;
964 : int (*sizefcn)(const void *); /* ADT function to ask length */
965 : } HEADER32;
966 :
967 : typedef struct {
968 : int version;
969 : int alignment;
970 : size_t head;
971 : size_t firstblock;
972 : int (*sizefcn)(const void *);
973 : } HEADER64;
974 :
975 : #if SIZEOF_SIZE_T==8
976 : typedef HEADER64 HEADER;
977 : typedef HEADER32 HEADER_OTHER;
978 : #else
979 : typedef HEADER32 HEADER;
980 : typedef HEADER64 HEADER_OTHER;
981 : #endif
982 : typedef struct hfblock {
983 : size_t size; /* Size of this block in freelist */
984 : size_t next; /* index of next block */
985 : } CHUNK;
986 :
987 : #define roundup_8(x) (((x)+7)&~7)
988 : #define roundup_4(x) (((x)+3)&~3)
989 : #define blocksize(h,p) ((p)->size)
990 :
991 : static inline size_t
992 2351 : roundup_num(size_t number, int alignment)
993 : {
994 2351 : size_t rval;
995 :
996 2351 : rval = number + (size_t) alignment - 1;
997 2351 : rval -= (rval % (size_t) alignment);
998 2351 : return rval;
999 : }
1000 :
1001 : #define HEAP_index(HEAP,INDEX,TYPE) ((TYPE *)((char *) (HEAP)->base + (INDEX)))
1002 :
1003 :
1004 : static void
1005 2351 : HEAP_empty(Heap *heap, size_t nprivate, int alignment)
1006 : {
1007 : /* Find position of header block. */
1008 2351 : HEADER *hheader = HEAP_index(heap, 0, HEADER);
1009 :
1010 : /* Calculate position of first and only free block. */
1011 2351 : size_t head = roundup_num((size_t) (roundup_8(sizeof(HEADER)) + roundup_8(nprivate)), alignment);
1012 2351 : CHUNK *headp = HEAP_index(heap, head, CHUNK);
1013 :
1014 2351 : assert(roundup_8(sizeof(HEADER)) + roundup_8(nprivate) <= VAR_MAX);
1015 :
1016 : /* Fill header block. */
1017 2351 : hheader->head = head;
1018 2351 : hheader->sizefcn = NULL;
1019 2351 : hheader->alignment = alignment;
1020 2351 : hheader->firstblock = head;
1021 2351 : hheader->version = HEAPVERSION;
1022 :
1023 : /* Fill first free block. */
1024 2351 : assert(heap->size - head <= VAR_MAX);
1025 2351 : headp->size = (size_t) (heap->size - head);
1026 2351 : headp->next = 0;
1027 :
1028 2351 : heap->dirty = true;
1029 2351 : }
1030 :
1031 : gdk_return
1032 2339 : HEAP_initialize(Heap *heap, size_t nbytes, size_t nprivate, int alignment)
1033 : {
1034 : /* For now we know about two alignments. */
1035 2339 : if (alignment != 8) {
1036 : alignment = 4;
1037 : }
1038 2339 : if ((size_t) alignment < sizeof(size_t))
1039 : alignment = (int) sizeof(size_t);
1040 :
1041 : /* Calculate number of bytes needed for heap + structures. */
1042 : {
1043 2339 : size_t total = 100 + nbytes + nprivate + sizeof(HEADER) + sizeof(CHUNK);
1044 :
1045 2339 : total = roundup_8(total);
1046 2339 : if (HEAPalloc(heap, total, 1) != GDK_SUCCEED)
1047 : return GDK_FAIL;
1048 2352 : heap->free = heap->size;
1049 : }
1050 :
1051 : /* initialize heap as empty */
1052 2352 : HEAP_empty(heap, nprivate, alignment);
1053 2352 : return GDK_SUCCEED;
1054 : }
1055 :
1056 :
1057 : var_t
1058 7398921 : HEAP_malloc(BAT *b, size_t nbytes)
1059 : {
1060 7398921 : Heap *heap = b->tvheap;
1061 7398921 : size_t block, trail, ttrail;
1062 7398921 : CHUNK *blockp;
1063 7398921 : CHUNK *trailp;
1064 7398921 : HEADER *hheader = HEAP_index(heap, 0, HEADER);
1065 :
1066 : /* add space for size field */
1067 7398921 : nbytes += hheader->alignment;
1068 7398921 : nbytes = roundup_8(nbytes);
1069 7398921 : if (nbytes < sizeof(CHUNK))
1070 : nbytes = (size_t) sizeof(CHUNK);
1071 :
1072 : /* block -- points to block with acceptable size (if available).
1073 : * trail -- points to predecessor of block.
1074 : * ttrail -- points to predecessor of trail.
1075 : */
1076 7398921 : ttrail = 0;
1077 7398921 : trail = 0;
1078 7399056 : for (block = hheader->head; block != 0; block = blockp->next) {
1079 7402065 : blockp = HEAP_index(heap, block, CHUNK);
1080 :
1081 7402065 : assert(trail == 0 || block > trail);
1082 7402065 : if (trail != 0 && block <= trail) {
1083 0 : GDKerror("Free list is not orderered\n");
1084 0 : return (var_t) -1;
1085 : }
1086 :
1087 7402065 : if (blockp->size >= nbytes)
1088 : break;
1089 135 : ttrail = trail;
1090 135 : trail = block;
1091 : }
1092 :
1093 : /* If no block of acceptable size is found we try to enlarge
1094 : * the heap. */
1095 7398921 : if (block == 0) {
1096 170 : size_t newsize;
1097 :
1098 170 : assert(heap->free + MAX(heap->free, nbytes) <= VAR_MAX);
1099 : #if SIZEOF_SIZE_T == 4
1100 : newsize = MIN(heap->free, (size_t) 1 << 20);
1101 : #else
1102 170 : newsize = MIN(heap->free, (size_t) 1 << 30);
1103 : #endif
1104 170 : newsize = (size_t) roundup_8(heap->free + MAX(newsize, nbytes));
1105 170 : assert(heap->free <= VAR_MAX);
1106 170 : block = (size_t) heap->free; /* current end-of-heap */
1107 :
1108 : /* Increase the size of the heap. */
1109 170 : TRC_DEBUG(HEAP, "HEAPextend in HEAP_malloc %s %zu %zu\n", heap->filename, heap->size, newsize);
1110 170 : if (HEAPgrow(&b->tvheap, newsize, false) != GDK_SUCCEED) {
1111 : return (var_t) -1;
1112 : }
1113 169 : heap = b->tvheap;
1114 169 : heap->free = newsize;
1115 169 : heap->dirty = true;
1116 169 : hheader = HEAP_index(heap, 0, HEADER);
1117 :
1118 169 : blockp = HEAP_index(heap, block, CHUNK);
1119 169 : trailp = HEAP_index(heap, trail, CHUNK);
1120 :
1121 169 : blockp->next = 0;
1122 169 : assert(heap->free - block <= VAR_MAX);
1123 169 : blockp->size = (size_t) (heap->free - block); /* determine size of allocated block */
1124 :
1125 : /* Try to join the last block in the freelist and the
1126 : * newly allocated memory */
1127 169 : if ((trail != 0) && (trail + trailp->size == block)) {
1128 134 : trailp->size += blockp->size;
1129 134 : trailp->next = blockp->next;
1130 :
1131 134 : block = trail;
1132 134 : trail = ttrail;
1133 : }
1134 : }
1135 :
1136 : /* Now we have found a block which is big enough in block.
1137 : * The predecessor of this block is in trail. */
1138 7398920 : blockp = HEAP_index(heap, block, CHUNK);
1139 :
1140 : /* If selected block is bigger than block needed split block
1141 : * in two.
1142 : * TUNE: use different amount than 2*sizeof(CHUNK) */
1143 7398920 : if (blockp->size >= nbytes + 2 * sizeof(CHUNK)) {
1144 7402078 : size_t newblock = block + nbytes;
1145 7402078 : CHUNK *newblockp = HEAP_index(heap, newblock, CHUNK);
1146 :
1147 7402078 : newblockp->size = blockp->size - nbytes;
1148 7402078 : newblockp->next = blockp->next;
1149 :
1150 7402078 : blockp->next = newblock;
1151 7402078 : blockp->size = nbytes;
1152 : }
1153 :
1154 : /* Delete block from freelist */
1155 7398920 : if (trail == 0) {
1156 7398920 : hheader->head = blockp->next;
1157 : } else {
1158 0 : trailp = HEAP_index(heap, trail, CHUNK);
1159 :
1160 0 : trailp->next = blockp->next;
1161 : }
1162 :
1163 7398920 : block += hheader->alignment;
1164 7398920 : return (var_t) block;
1165 : }
1166 :
1167 : void
1168 35 : HEAP_free(Heap *heap, var_t mem)
1169 : {
1170 : /* we cannot free pieces of the heap because we may have used
1171 : * append_varsized_bat to create the heap; if we did, there may be
1172 : * multiple locations in the offset heap that refer to the same entry in
1173 : * the vheap, so we cannot free any until we free all */
1174 35 : (void) heap;
1175 35 : (void) mem;
1176 : #if 0
1177 : HEADER *hheader = HEAP_index(heap, 0, HEADER);
1178 : CHUNK *beforep;
1179 : CHUNK *blockp;
1180 : CHUNK *afterp;
1181 : size_t after, before, block = mem;
1182 :
1183 : assert(hheader->alignment == 8 || hheader->alignment == 4);
1184 : if (hheader->alignment != 8 && hheader->alignment != 4) {
1185 : GDKerror("Heap structure corrupt\n");
1186 : return;
1187 : }
1188 :
1189 : block -= hheader->alignment;
1190 : blockp = HEAP_index(heap, block, CHUNK);
1191 :
1192 : /* block -- block which we want to free
1193 : * before -- first free block before block
1194 : * after -- first free block after block
1195 : */
1196 :
1197 : before = 0;
1198 : for (after = hheader->head; after != 0; after = HEAP_index(heap, after, CHUNK)->next) {
1199 : if (after > block)
1200 : break;
1201 : before = after;
1202 : }
1203 :
1204 : beforep = HEAP_index(heap, before, CHUNK);
1205 : afterp = HEAP_index(heap, after, CHUNK);
1206 :
1207 : /* If it is not the last free block. */
1208 : if (after != 0) {
1209 : /*
1210 : * If this block and the block after are consecutive.
1211 : */
1212 : if (block + blockp->size == after) {
1213 : /*
1214 : * We unite them.
1215 : */
1216 : blockp->size += afterp->size;
1217 : blockp->next = afterp->next;
1218 : } else
1219 : blockp->next = after;
1220 : } else {
1221 : /*
1222 : * It is the last block in the freelist.
1223 : */
1224 : blockp->next = 0;
1225 : }
1226 :
1227 : /*
1228 : * If it is not the first block in the list.
1229 : */
1230 : if (before != 0) {
1231 : /*
1232 : * If the before block and this block are consecutive.
1233 : */
1234 : if (before + beforep->size == block) {
1235 : /*
1236 : * We unite them.
1237 : */
1238 : beforep->size += blockp->size;
1239 : beforep->next = blockp->next;
1240 : } else
1241 : beforep->next = block;
1242 : } else {
1243 : /*
1244 : * Add block at head of free list.
1245 : */
1246 : hheader->head = block;
1247 : }
1248 : #endif
1249 35 : }
1250 :
1251 : void
1252 135 : HEAP_recover(Heap *h, const var_t *offsets, BUN noffsets)
1253 : {
1254 135 : HEADER *hheader;
1255 135 : CHUNK *blockp;
1256 135 : size_t dirty = 0;
1257 135 : var_t maxoff = 0;
1258 135 : BUN i;
1259 :
1260 135 : if (!h->cleanhash)
1261 : return;
1262 135 : hheader = HEAP_index(h, 0, HEADER);
1263 135 : assert(h->free >= sizeof(HEADER));
1264 135 : assert(hheader->version == HEAPVERSION);
1265 135 : assert(h->size >= hheader->firstblock);
1266 414 : for (i = 0; i < noffsets; i++)
1267 279 : if (offsets[i] > maxoff)
1268 : maxoff = offsets[i];
1269 135 : assert(maxoff < h->free);
1270 135 : if (maxoff == 0) {
1271 0 : if (hheader->head != hheader->firstblock) {
1272 0 : hheader->head = hheader->firstblock;
1273 0 : dirty = sizeof(HEADER);
1274 : }
1275 0 : blockp = HEAP_index(h, hheader->firstblock, CHUNK);
1276 0 : if (blockp->next != 0 ||
1277 0 : blockp->size != h->size - hheader->head) {
1278 0 : blockp->size = (size_t) (h->size - hheader->head);
1279 0 : blockp->next = 0;
1280 0 : dirty = hheader->firstblock + sizeof(CHUNK);
1281 : }
1282 : } else {
1283 135 : size_t block = maxoff - hheader->alignment;
1284 135 : size_t end = block + *HEAP_index(h, block, size_t);
1285 135 : size_t trail;
1286 :
1287 135 : assert(end <= h->free);
1288 135 : if (end + sizeof(CHUNK) <= h->free) {
1289 135 : blockp = HEAP_index(h, end, CHUNK);
1290 135 : if (hheader->head <= end &&
1291 135 : blockp->next == 0 &&
1292 135 : blockp->size == h->free - end)
1293 : return;
1294 0 : } else if (hheader->head == 0) {
1295 : /* no free space after last allocated block
1296 : * and no free list */
1297 : return;
1298 : }
1299 0 : block = hheader->head;
1300 0 : trail = 0;
1301 0 : while (block < maxoff && block != 0) {
1302 0 : blockp = HEAP_index(h, block, CHUNK);
1303 0 : trail = block;
1304 0 : block = blockp->next;
1305 : }
1306 0 : if (trail == 0) {
1307 : /* no free list */
1308 0 : if (end + sizeof(CHUNK) > h->free) {
1309 : /* no free space after last allocated
1310 : * block */
1311 0 : if (hheader->head != 0) {
1312 0 : hheader->head = 0;
1313 0 : dirty = sizeof(HEADER);
1314 : }
1315 : } else {
1316 : /* there is free space after last
1317 : * allocated block */
1318 0 : if (hheader->head != end) {
1319 0 : hheader->head = end;
1320 0 : dirty = sizeof(HEADER);
1321 : }
1322 0 : blockp = HEAP_index(h, end, CHUNK);
1323 0 : if (blockp->next != 0 ||
1324 0 : blockp->size != h->free - end) {
1325 0 : blockp->next = 0;
1326 0 : blockp->size = h->free - end;
1327 0 : dirty = end + sizeof(CHUNK);
1328 : }
1329 : }
1330 : } else {
1331 : /* there is a free list */
1332 0 : blockp = HEAP_index(h, trail, CHUNK);
1333 0 : if (end + sizeof(CHUNK) > h->free) {
1334 : /* no free space after last allocated
1335 : * block */
1336 0 : if (blockp->next != 0) {
1337 0 : blockp->next = 0;
1338 0 : dirty = trail + sizeof(CHUNK);
1339 : }
1340 : } else {
1341 : /* there is free space after last
1342 : * allocated block */
1343 0 : if (blockp->next != end) {
1344 0 : blockp->next = end;
1345 0 : dirty = trail + sizeof(CHUNK);
1346 : }
1347 0 : blockp = HEAP_index(h, end, CHUNK);
1348 0 : if (blockp->next != 0 ||
1349 0 : blockp->size != h->free - end) {
1350 0 : blockp->next = 0;
1351 0 : blockp->size = h->free - end;
1352 0 : dirty = end + sizeof(CHUNK);
1353 : }
1354 : }
1355 : }
1356 : }
1357 0 : h->cleanhash = false;
1358 0 : if (dirty) {
1359 0 : if (h->storage == STORE_MMAP) {
1360 0 : if (!(ATOMIC_GET(&GDKdebug) & NOSYNCMASK))
1361 0 : (void) MT_msync(h->base, dirty);
1362 : else
1363 0 : h->dirty = true;
1364 : } else
1365 0 : h->dirty = true;
1366 : }
1367 : }
|